微分の公式

微分の定義

初等的な微分の定義は以下の通り。

(1)    \begin{equation*} f'(x) = \frac{d f(x)}{dx} = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \end{equation*}

関数の積・商の微分

関数の積の微分

(2)    \begin{equation*} f(x) = u(x) v(x) \rightarrow f'(x) = u(x) v'(x) + u'(x) v(x) \end{equation*}

 

(3)    \begin{equation*} f'(x) = \lim_{\Delta x \rightarrow 0} \frac{u(x + \Delta x) v(x + \Delta x) - u(x) v(x)}{\Delta x} \end{equation*}

ここで

(4)    \begin{eqnarray*} u(x + \Delta x) &=& u(x) + u'(x) \Delta x + o({\Delta x}^2) \\ v(x + \Delta x) &=& v(x) + v'(x) \Delta x + o({\Delta x}^2) \end{eqnarray*}

したがって、

(5)    \begin{equation*} u(x + \Delta x) v(x + \Delta x) = u(x) v(x) + u(x) v'(x) \Delta x + u'(x) v(x) \Delta x + o({\Delta x}^2) \end{equation*}

これより以下を得る。

(6)    \begin{eqnarray*} f'(x) &=& \lim_{\Delta x \rightarrow 0} \frac{u(x) v'(x) \Delta x + u'(x) v(x) \Delta x + o({\Delta x}^2)}{\Delta x} \\ &=& u(x) v'(x) + u'(x) v(x) \end{eqnarray*}

関数の商の微分

(7)    \begin{equation*} f(x) = \frac{v(x)}{u(x)} \rightarrow f'(x) = \frac{u(x) v'(x) - u'(x) v(x)}{u(x) ^2} \end{equation*}

 

(8)    \begin{equation*} f(x) = \frac{v(x)}{u(x)} \Leftrightarrow v(x) = f(x) u(x) \end{equation*}

(9)    \begin{equation*} v'(x) = f'(x) u(x) + f(x) u'(x) = f'(x) u(x) + \frac{v(x) u'(x)}{u(x)} \end{equation*}

これより(7)を得る。

合成関数の微分

(10)    \begin{eqnarray*} y = f(u(x)) & \rightarrow & \frac{dy}{dx} = f'(u(x))u'(x) \\ &{\rm or}& \\ \frac{dy}{dx} &=& \frac{dy}{du} \frac{du}{dx} \end{eqnarray*}

 

u(x + \Delta x) - u(x) = \Delta u(x)とおくと、

(11)    \begin{eqnarray*} && lim_{x \rightarrow \infty} \frac{f(u(x + \Delta x)) - f(u(x))}{\Delta x} \\ &=& lim_{x \rightarrow \infty} \frac{f(\Delta u(x)) - f(u(x))}{\Delta u(x)} \frac{\Delta u(x)}{\Delta x} \\ &=& f'(u(x))u'(x) \end{eqnarray*}

逆関数の微分

(12)    \begin{eqnarray*} y = f^{-1}(x) & \rightarrow & \frac{dy}{dx} = \frac{1}{f'(x)} \\ &{\rm or}& \\ \frac{dx}{dy} &=& \frac{1}{\frac{dy}{dx}} \end{eqnarray*}

 

(13)    \begin{equation*} y = f^{-1}(x) \rightarrow f(y) = x \end{equation*}

とおいて、合成関数の微分より、

(14)    \begin{eqnarray*} f'(y) \frac{dy}{dx} = 1 \\ \therefore \frac{dy}{dx} = \frac{1}{f'(y)} \end{eqnarray*}

媒介変数表示

(15)    \begin{equation*} x = u(t), y = v(t) \rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{v'(t)}{u'(t)} \end{equation*}

 

\Delta u(t) = u(t + \Delta t) - u(t)\Delta v(t) = v(t + \Delta t) - v(t)とおいて、

(16)    \begin{equation*} \lim_{n \rightarrow \infty} \frac{\Delta v(t)}{\Delta u(t)} = \lim_{n \rightarrow \infty} \frac{v(t + \Delta t) - v(t)}{\Delta t} \frac{\Delta t}{u(t + \Delta t) - u(t)} = \frac{v'(t)}{u'(t)} \end{equation*}

 

中心極限定理

概要

中心極限定理(central limit theorem: CLT)は、一言で言えば次のようになる。「母集団がどのような確率分布に従うとしても、標本の数を十分大きくしたときには、その合計値あるいは標本平均は、正規分布に従う」

具体的には、母集団の平均を\mu、標準偏差を\sigmaとし、nが十分に大きいとき、

  • 標本の合計S_n = \sum X_{i}は正規分布N(n \mu,n\sigma^2)に従う
  • 標本平均\overline{X}_n = \frac{1}{n} \sum X_{i}は正規分布N(\mu, \frac{\sigma^2}{n})に従う

 

表現

中心極限定理は、一般には以下のように表される。

(1)    \begin{equation*} \lim_{n \rightarrow \infty} \Pr \left( \frac{S_n - n \mu}{\sqrt{n} \sigma} \leq \alpha \right) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2} \pi} e^{- \frac{x^2}{2}} dx \end{equation*}

これを少し変形すると、

(2)    \begin{equation*} \lim_{n \rightarrow \infty} \Pr \left( \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \leq \alpha \right) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2} \pi} e^{- \frac{x^2}{2}} dx \end{equation*}

実用

たとえば、サイコロをn回振った目の合計を考える。全て1(合計がn)や全て6(合計が6n)というケースは稀なので、その間の値になりそうだと予想される。

中心極限定理を用いると、n個のサイコロの目の平均と分散より、n個のサイコロの目の合計は、N( \frac{7}{2} , \frac{35}{12n})に従うことになる。

これをRの下記コードで試してみた。一回の試行でサイコロを投げる回数をn.dicesに設定して、その平均を求める試行を1000回繰り返す。

n.dicesの回数を変化させた実行結果は以下の通りで、このケースの場合は、n=10程度でもかなり平均の周りに尖った分布となる。

CLT_dice_n=01CLT_dice_n=02n=5n=10