Ruby – コンソール表示

puts

putsはオブジェクトの内容を表示する。文の実行ごとに改行する。

print

printはオブジェクトの内容を表示する。改行はしない。

p

pはオブジェクトの形式がわかるように表示する。文の実行ごとに改行する。

 

Python – 配列要素の重複数を制限する

概要

文字で表現するとわかり難いが、要するに次のようなことを想定している。たとえば次のような1次元の配列があるとする。

この配列には20個の要素があり、0~4の数値がそれぞれ5個、5個、2個、2個、4個、4個、順不同で含まれている。

この配列において、各数値の数を最大でも3個以内となるように切り落としたい、というのが目標。

たとえば、機械学習の教師データの数がターゲットごとにばらついている場合、各ターゲットのデータ数をある程度の数以下に抑えたいときが想定される。

上の例で仮に早く出現した準から3つまでを残して後は捨てるとすれば、以下のような配列になる。

内容:4 0 3 3 3 1 3 2 4 0 0 4 2 1 0 1 1 0 1 4
個数:1 1 1 2 3 1 4 1 2 2 3 3 2 2 4 3 4 5 5 4

なお、単に1つの配列の要素を切り落とすだけでなく、これと対応する配列が別にあって、その要素についても同時に切り落とすことも想定する。これは、機械学習のターゲット配列でデータを制限するのに、これに紐づけられた画像データなどを格納した配列も同時に操作するイメージ。

手順

ターゲットごとのインデックスの取得

targetsの20個のデータのうちid=0について考える。targetsの要素のうち値が0のものは5個あり、それらのインデックスは(1, 9, 10, 14, 17)。同様にid=1についても5個あり、インデックスは(5, 13, 15, 16, 18)。

このようにしてid=0~4についてインデックスを書き出すと以下の通りになる。

0:1, 9, 10, 14, 17
1:5, 13, 15, 16, 18
2:7, 12
3:2, 3, 4, 6
4:0, 8, 11, 19

各idに対応する配列はnumpy.where()関数を用いて以下のように得られる。

上の例では、ループのidを0~4と変化させていくのにrange(5)を使っている。ところが一般的には、番号が連続して存在しているとは限らず、またその上限もわからない。

そこで、targetsに出てくる要素を重なりなく、かつ全て使うためにnumpy.unique()関数を使っている。unique()関数は引数の配列の要素の重複を除き、昇順・辞書順に並べてくれる。この引数にtargetsを渡して、要素の重なりを除けば、targets中の要素を重なりなく1つずつ参照できる。

取り出す要素の制限

次に、すべてのターゲットのデータ数が3個以下になるようにすることを考える。

これらのデータで各idの個数を3個以下にするのに、出現順位の早いものから3個を選び出すことを考える。

0:1, 9, 10, 14, 17
1:5, 13, 15, 16, 18
2:7, 12
3:2, 3, 4, 6
4:0, 8, 11, 19

各配列の最初の3個を取り出すには、各idに対応する配列の先頭から3個目までをスライスで取り出せばよい。

これで値の最大3個までとするのに取り出すべきtargets中のインデックスが得られた。

要素の抽出

targets配列の要素の個数を制限するには、上で絞り込まれたインデックスに対応する要素を残し、それ以外の要素を切り捨てる。そのためには、残すべきインデックス位置の値がTrue、その他のインデックス位置の値がFalseであるbool配列をつくり、これをtargetsの引数とすればよい。

この配列を例えばmaskという名前とすると、targetsと同じサイズですべての要素がFalseである配列としてmaskを準備し、先ほどの切り落とすべきインデックスの位置のみTrueにするとよい。

以下では、まず全要素がFalsetargetsと同じサイズのbool配列を準備し、各idに対して3つ目までの要素の位置をTrue(1)としている。

ループの1回目で1、9、10番目がTrueになり、2回目で5、13、15番目がTrueに代わっていき、ループを重ねるごとに、取り出すべき要素の位置がTrueになっていることが確認できる。

なおbool配列の初期化では、Falseが数値の0と等価なため、numpy.zeros()関数を使っている。同じ理由で、numpy.where()Trueをセットするときに、数値の1をセットしている。

最後に、このbool配列をtargetsに適用して、取り出すべき要素の配列を得る。

他の配列の同時操作

mask配列は、targetsと同じサイズを持つ次元の配列に繰り返し適用できるので、たとえば機械学習でtargetsの各要素に紐づけられた画像データなどを格納した配列などについても、targetsと整合させながら必要な分だけ切出すことができる。

numpy – bincount

概要

numpy.bincount()関数の仕様

  • 整数型の配列を引数にとる
  • 配列中、同じ値の要素の個数をカウントする
  • 0~要素の最大値を要素とし、各要素番号に対応する値の個数を要素とする配列を返す
  • 元のデータの要素ごとの重みを指定することができる

使い方

基本形

引数で与えた整数型配列中の同じ値をカウントして、各値ごとの個数を要素とする配列を返す。

上の結果の意味は、0が1個、1が2個、2が3個、3が2個。

値が飛んでいる場合

引数の配列中、0~最大値までの整数値に対する数をカウントする。値が存在しない場合の個数は0。

上の例では、0~5までの個数がカウントされ、0, 2, 4は配列中に存在しないので0となっている。

順不同

引数の配列中の要素は昇順である必要はない。

weightsの意味

引数にweightsを指定する場合。

  • データの配列と同じ要素数のweightsの配列を与える。
  • 要素をカウントの場合に1ずつ足すのではなく、各要素の位置に対応した重みが加算されていく

上の例では以下のように動作している。

  • 0は存在しないので0
  • 1は0番目に1つだけ存在し、その位置のweightsの値は0.1
  • 2は1番目と3番目に存在するので、weightsの第1要素0.2と第3要素0.4を加えて0.6
  • 3は存在しないので0
  • 4は2番目、4番目、5番目にあるので、weightsの第2要素0.3、第4要素0.5、第5要素0.6を加えて1.4

 

pyplot.imshow – 画像表示

概要

matplotlib.pyplot.imshow()は画像表示用のメソッドで、表示対象として、画像ファイルや画像情報を格納した配列を指定する。

pyplotやsubplotで直接実行するほか、Axesオブジェクトのメソッドとしても実行できる。

ピクセルデータのレンジのデフォルト設定と与えるデータのレンジによって予期しない結果になることもあり、vminvmaxを明示的に指定した方がよい。

画像ファイルの表示

以下のコードは、JPEGファイルを読み込んで表示する。

ここではpyplot.subplotのメソッドとしてimshow()を実行している。画像が1つの場合、pyplot.imshow()でもよい。

1つは画像ファイルをそのまま引数にし、もう1つは画像ファイルを配列の形にしてから引数に渡している。画像の配列の形については後述。

配列の画像表示

基本形

imshow()は配列を引数にとることができる。

以下の例では、カラーマップを指定して2×2=4要素の2次元配列を表示している。最小値0がカラーマップbwrの青に、最大値255が赤に対応し、その間の数値の大きさに応じたカラーマップ上の色が選択されている(デフォルトのcmapvirいdis)。

なお、この例ではpyplotから直接imshow()を実行している。

レンジ

imshow()に配列を渡して描画させるとき、数値のレンジに留意する必要がある。

デフォルトでは、imshow()は渡された配列の中の最小値と最大値をカラーマップの下限値と上限値に対応させ、線形にマッピングする。

なお、この例ではarray-likeとして2次元のリストを渡していて、Axesからimshow()を呼び出している。

4つの配列はそれぞれ最小値と最大値が異なり、かつその中央の値を持つ。値は異なるが全て最小値がカラーマップbwrの下限値に対応する青、最大値が上限値に対応する赤、中央値は白となっている(特段フランス国旗を意図したものではない)。

viminとvmax

imshow()の引数でvminvmaxを設定すると、配列の値に関わらず、vminvmiaxをカラーマップの下限値と上限値に対応させる。

以下の例では最小値0、最大値1の2要素の配列を、vminvmaxを変えてカラーマップbwrで描画させている。

左上はデフォルトなので、最小値0がカラーマップ下限値に対応した青に、最大値1が上限値に対応した赤になっている。

右上はvmin=0で配列の最小値0と同じだが、vmax=2としている。このため配列の0はカラーマップ下限の青で、配列の1はカラーマップ中央の白になっている。

左下はvmin=-1も設定されているので、配列の0、1はカラーマップの左から1/3、2/3に相当する色となっている。

右下はvminvmaxが配列の最小値と最大値の範囲より内側にある。このため、配列の最小値・最大値はそれぞれカラーマップの下限・上限に対応する青・赤となっている。

RGB

array-likeの次元が3次元になると、RGB/RGBA形式だと認識される。

[rows, cols, 3]
3次元目のサイズが3の時はRGB表現と認識される。1次元目と2次元目はそれぞれ画像の行数と列数とみなされ、3次元目は3つの列がR, G, Bの値に対応する。
[rows, cols, 4]
3次元目のサイズが4の時はRGBA表現と認識される。1次元目と2次元目はそれぞれ画像の行数と列数とみなされ、3次元目は3つの列がR, G, Bの値に対応し、4つ目の列が透明度に対応する。

R, G, B, Aの値は、配列のdtypeint形式の時には0~255、floatの時には0~1の範囲が想定される。

以下の例の内容。

  • 画像サイズを2行×4列として、R, G, Bごとに画像のピクセルデータを設定→shape=(3, 2, 4)
  • ピクセル並び替え後の配列を4つ準備
  • forループでピクセル並び替え
  • 画像表示とデータ内容の表示

3次元配列のピクセルの並び替えは、泥臭くforループで回しているが、もっとエレガントな方法があるかもしれない(もとから(3, rows, cols)の形にしてくれればよかったのに)。

 

imshow()に渡す配列のdtypeint型の時は、ピクセルデータのレンジが0~255になる。

  • 左上は元の配列のままR, G,Bが0か255なので、想定した組み合わせの色となっている
  • 右上は想定されているレンジに対して0.0~1.0の値を与えていることから、どのピクセルともR, G, Bが0か1(ほぼゼロ)となり黒くなっている(そのまま実行され、特にメッセ維持は出ない)

配列のdtypeがfloatの時は、ピクセルデータの想定レンジは0.0~1.0になる。

  • 左下は最小値0と最大255を与えているが、結果は左上と同じで、imshow()のデフォルトのレンジ0~255に変更されているようである(特にメッセージは出ない)
  • 右下は与えるピクセルデータを0.0~1.0としたところ、”入力データをクリップしている”というメッセージが出たが、レンジが修正されたらしく結果は意図通り

並べ替えた後の配列は、直感的にはわかりにくい形になっている。

グレースケール

グレースケールの場合は、cmap='gray'を指定する。vminvmaxは省略しても同じ結果となるが念のため。

 

DataFrame – get_dummies – One-hot

概要

DataFrameのget_dummies()メソッドは、属性データ(カテゴリーデータ)をone-hot-encodingの形に変換してくれる。

Scikit-learnにもOneHotEncoderがあるが、get_dumies()はデータの切り貼りをせずにダイレクトに属性変数だけをone-hotの形にしてくれるので便利。

基本

get_dumies()の引数にDataFrameを指定すると、文字列で属性指定されたデータが自動で認識されてon-hotの形に変換される。

分解された列名は、"元の列名_属性名"となり、それぞれに対応する属性の列のみが1、その他の列は0となる。列の並びは、属性名の辞書順。数値データの列は無視される。

属性データが複数列の場合

文字列の属性データが複数列ある場合も、自動的にone-hotに分解してくれる。

属性が数値表現の場合

属性値が文字列ではなく数値表現の場合、get_dummies()の引数に単にDataFrameを渡すだけでは変換してくれない(通常の数量データとして認識される)。

そこで、変換したい列をcolumns引数で指定する。

複数の属性データの列がある場合、columns引数でリスト指定する。

属性名の指定

prefix引数で文字列を指定すると、属性名がその文字列で置き換えられる。ただし複数の属性列が全て同じ文字列になる。

属性列ごとにprefixを変えて指定したい場合はリストで指定。

 

DataFrame – データの概観

概要

DataFrameの規模、格納されているデータの概要や基礎統計量を概観する各種の手順。Scikit-learnのBoston housingデータセットを例にする。

DataFrameの規模・形状

sizeプロパティーで全データ数、shapeプロパティーで行数と列数を確認。

データの先頭部分と末尾部分

head()メソッド/tail()メソッドで先頭/末尾の5行分が得られる。引数で抜き出す行数を指定。

info()~各列の基本情報の表示

info()メソッドは、DataFrameの概要に関する概略情報を出力する。直接標準出力にプリントする点に注意。

たとえば一部にNaNが含まれる場合の出力は以下のようになる。

dscribe()~基本的な統計量

describe()メソッドは、各列のデータについて、個数や平均といった基本的な統計量を計算する。

特定の列の統計量を見たいときは列を指定。

なおstd(標準偏差)については、ddof=1を指定した結果と同じであり、n−1で割った不偏分散。

全ての列を見たいときには、set_option()メソッドの引数でdisplay.max_columnsパラメーターを指定する。初期値に戻すときはreset_option()メソッド。

属性変数のカウント

属性変数の属性値のカウントには、value_counts()メソッドを使う。このメソッドは、ユニークな値の数をカウントして集計する。

2つの属性変数をファンシーインデックスで指定すると、「2つの属性のユニークな組み合わせ」の数が集計される。

 

Python – 平均・分散・共分散

1次元配列の場合

平均

平均はmean()メソッドで計算。

分散・標準偏差

標本分散・標本標準偏差

分散はvar()メソッド、標準偏差はstd()メソッドで計算。デフォルトでは標本分散と標本標準偏差。

不偏推定量

分散の算出では、引数ddof (delta degrees of freedom)で指定した引数をデータ数nから引いた数で偏差の二乗和を割る。デフォルトではddof=0なので標本分散、標本標準偏差になるが、ddof=1を指定すると、不偏分散、標準偏差の不偏推定量が計算される。

2次元配列の場合

平均

平均はmean()メソッドで計算。引数axis=0/1で列方向/行方向の計算方向を指定。計算結果は1次元配列で、要素数は列方向の平均なら行数、行方向の平均なら列数と同じになる。

分散・標準偏差

標本分散・標本標準偏差

分散はvar()メソッド、標準偏差はstd()メソッドで計算。デフォルトでは標本分散、標本標準偏差を計算。デフォルトでは標本分散、標本標準偏差。

不偏推定量

引数ddof=1を指定すると、データ数nからddof=1を引いた数で偏差の二乗和が割られ、不偏分散、標準偏差の不偏推定量が計算される。

共分散

cov()メソッドで二つのデータの共分散行列を計算する。結果は2次元配列で得られ、対角要素は各データの分散、対角要素以外の要素は行数・列数に対応する共分散。

デフォルトでは引数bias=Falseとなっていて、偏差の積和をn−1で割った不偏推定量が計算される。

bias=Trueを指定すると、偏差の積和を割る数がnとなり、標本に対する分散・共分散が計算される。

 

Python – 行・列単位の合計・率の計算

概要

2次元のndarrayDataFrameで、行単位や列単位での合計を計算したり、それを使って行単位/列単位の率を計算する方法。

2次元のndarrayの場合は、

  • 合計はsum()メソッドの引数にaxisを指定
    • 列和ならaxis=0、行和ならaxis=1
    • 結果は1次元配列で得られる
  • 率の計算はこれらの合計の配列を使うが、列和に対する各列要素の率なら1次元配列の行ベクトルのまま、行和に対する各行要素の率なら2次元の列ベクトルに変換して除算

DataFrameの場合、まず合計を求めるには、

  • 合計はsum()メソッドの引数にaxisを指定
    • 列和ならaxis=0、行和ならaxis=1
    • 結果はSeriesオブジェクトで得られる

その上で率の計算には2通りある。1つ目はSeriesオブジェクトの内容をndarrayとして取り出して計算する方法で、

  • Series.valuesで列和/行和の配列を取り出し、ndarrayの場合と同じ方法で計算する

もう1つの方法はSeriesオブジェクトのままでdiv()メソッドにaxisを指定する方法で、

  • 列和に対する各列要素の率を計算するには、div(列和Series, axis=1)
  • 行和に対する各行要素の率を計算するには、div(列和Series, axis=0)

ndarrayの場合

確認

まず確認のために、以下の配列を準備する。

行ベクトルを2次元配列に加えると、配列の各行に対して行ベクトルが加えらえる。

列ベクトルを2次元配列に加えると、配列の各列に対して列ベクトルが加えられる。

つまり、ndarrayの2次元配列に行または列のベクトルを加えると、加える方のベクトルの形状に合わせて各行/列に演算が実行される。これは他のオペレーターについても同じ。

この演算は直感的にも分かりやすく、列ごと/行ごとの小計に対する比率の計算も思い浮かべることができる。

合計

ndarrayの各列/行に沿った合計を計算する。合計計算はndarraysum()メソッドを使うが、引数を省略すると全要素の和となる。引数にaxis=0を指定すると列方向に処理がされ(つまり配列の各列の要素が列方向に足され)、axis=1を指定すると行方向に処理がされる(つまり配列の各行の要素が行方向に足される)。

以下の例は、最初に使った2次元配列の列方向の和(の行ベクトル)と行方向の和(の列ベクトル)を計算している。

率の計算

2次元配列を行合計ベクトルで割ると、各行の要素が合計ベクトルの各要素で割られる(各列の行要素の合計は1になる)。

また、2次元配列を列合計ベクトルで割ると、各列の要素が合計ベクトルの各要素で割られる。繰り返しになるが、この場合の合計ベクトルは2次元の列ベクトルになっている。

以下の図のように、この

DataFrameの場合

確認

まず確認のために、以下のDataFrameSeriesを準備する。2次元配列はndarrayの例と同じものを流用。

合計ベクトルがndarrayの場合

演算をほどこすベクトルがndarrayの場合、2次元配列の時と同じように、ベクトルが行/列によって自動的に加えられる方向が決められる。

合計ベクトルがSeriesの場合

DataFramesum()メソッドで行や列の合計を計算するとSeriesオブジェクトで結果が得られるため、その挙動を確認しておく。

Seriesを単純にDataFrameと演算子で結ぶと、行ベクトルとして扱われる。

Seriesは行・列の概念を持たないが、演算の方向を明示するのに以下の方法をとる。

演算子に対応するメソッドは、addsubmuldivmodpowが準備されている。

合計

列/行ごとの合計は、ndarrayと同じくDataFramesum()メソッドで引数axisを指定して計算する。

 

率の計算

Seriesndarrayで取り出して計算する方法

Seriesvaluesプロパティーでその内容をndarrayとして取り出せる。

列和に対しては、それを行ベクトルのまま除算すれば、各列の要素を行ベクトルの対応する要素で割った値となる。

行和に対しては、ndarrayを1列の列ベクトルに変換して除算すれば、各行の要素を列ベクトルの対応する要素で割った値となる。

Seriesのままで計算する方法

合計Seriesをそのまま使って除算する場合はDataFramediv()メソッドを使いaxisを指定するが、axisの指定の仕方に注意が必要。

列和で除算する場合は、その各要素が各行の各要素に対応するため、列和を行ベクトルとみて各行に除算を適用する(axis=1)。

分かりにくいので図示すると以下のようになる。まず合計を求めるのにsum()メソッドでaxis=0として列和を求める。この合計で各要素を割るのに1列目の要素は合計の1つ目の要素、2列目の要素は合計の2つ目の要素・・・で割る必要があるので、div()メソッドでaxis=1とする。こうすると合計のSeriesは行ベクトルとみなされて、それが各行の要素に適用される。

行和で除算する場合は、その各要素が各列の各要素に対応するため、行和を列ベクトルとみて各列に除算を適用する(axis=0)

これも分かりにくいので以下のように図示する。合計を求めるのにsum()メソッドでaxis=1として行和を求める。この合計で各要素を割るのに1行目の要素は合計の1つ目の要素、2行目の要素は合計の2つ目の要素・・・で割る必要があるので、div()メソッドでaxis=1とする。こうすると合計のSeriesは列ベクトルとみなされて、それが各列の要素に適用される。

このように、div()のような演算子メソッドでaxisを使う方法はややこしい(少なくとも私には)。

実行速度

各計算方法の実行速度には、あまり大きな差は出なかった。

実行時間は以下の通りで、各計算手法の間に差はない。敢えて言えば、DataFrameを使った場合に僅かに時間がかかっている。

なお、この計算はpandasのバージョン1.1.4で実行したが、upgrade前のバージョン0では、3つ目と5つ目、DataFrameで行単位の演算を行うときに20秒台と2桁長い時間がかかっていた。

 

axisの方向

概要

配列などのメソッドの引数で指定するaxis=0/1について確認。

  • axis=0は配列やDataFrameを列単位で捉えて、その列の中で処理を行いながら、すべての列に対して処理が行われる
    • SerieseオブジェクトがDataFrameの処理の対象となる場合は列として扱われ、DataFrameの各列を処理しながらすべての列に適用される
  • axis=1は配列やDataFrameを行単位で捉えて、その行の中で処理を行いながら、すべての行に対して処理が行われる。
    • SerieseオブジェクトがDataFrameの処理の対象となる場合は行として扱われ、DataFrameの各行を処理しながらすべての行に適用される

ndarrayの場合

まずndarrayの2次元配列で確認する。

max()メソッド

  • axis=0は列単位で各列の最大値を探し、それらを要素とする配列(要素数=列数の1次元配列)
  • axis=1は行単位で各行の最大値を探し、それらを要素とする配列(要素数=行数の1次元配列)

sum()メソッド

  • axis=0は列単位で各列の合計を要素とする配列(要素数=列数の1次元配列)
  • axis=1は行単位で各行の合計を要素とする配列(要素数=行数の1次元配列)

repeat()メソッド

  • axis=0は列単位で各列の要素が指定回数繰り返される
  • axis=1は行単位で各行の要素が指定回数繰り返される

図による理解

sum()メソッドを例に、axis=0/1に対する挙動を図にすると、以下のようになる。

DataFrameの場合

以下のDataFrameSeriesオブジェクトで確認する。Seriesオブジェクトは行として扱われ、array_like、1次元の配列でも同じ結果になる。

min()メソッドなど

minmaxsumなどのメソッドの考え方はndarrayと同じ挙動。

add()などの演算メソッド

DataFrameには演算子による演算の代替となるメソッドがある(addsubmuldivmodpow)。addメソッドを例にとると、以下のように引数を指定。

add(array_like, axis=0/1)

  • axis=0array_likeを列とみなして、DataFrameオブジェクトの各列の要素との和を計算する
  • axis=1array_likeを行とみなして、DataFrameオブジェクトの各行の要素との和を計算する

apply()メソッド

applyメソッドは、行または列を指定した関数に渡す。

  • axis=0DataFrameオブジェクトの各列を指定した関数に渡す
  • axis=1DataFrameオブジェクトの各行を指定した関数に渡す

演算メソッドの図による理解

演算メソッドは少し挙動が違うので図で整理しておく。1次元のarray_likeオブジェクトがaxisの指定によって列/行としてみなされる点に注意。

補足

1次元配列の場合

1次元配列に対してaxis引数を使う場合、行ベクトルとしてaxis=1に反応しそうだが、実際にはaxis=0で各要素に対する処理が行われる。axis=1を指定すると、たとえば以下のようなエラーになる。

元々多次元配列を意図した引数なので、1次元配列に使うのはナンセンスだろう(axis=0を行単位の処理にしておけば自然ではあったかもしれないが)。

1行の2次元配列の場合

1行の配列(1つの1次元配列を要素に持つ2次元配列:行ベクトル)に対するaxisの効果を、sumメソッドで見てみる。

axis=0の場合は各要素が1要素の列ベクトルとみなされ、3つの列(要素)ごとに処理される。その結果は3つの要素を持つ1次元配列(行ベクトル)となる。

axis=1の場合は行ベクトル全体が1つの行とみなされ、それらの要素に対して処理がされる。その結果は1つの数値となるが、1つの要素を持つ1次元配列で返される。

1列の2次元配列の場合

1列の配列(列ベクトル)に対するaxisの効果を、sumメソッドで見てみる。

axis=0の場合は3つの要素を持つ1つの列に対して処理される。その結果は1つの数値となるが、1つの要素を持つ1次元配列で返される。

axis=1の場合は列の各要素が1要素の行とみなされ、3つの行(要素)ごとに処理される。その結果は3つの要素を持つ列ベクトルだが、3つの要素を持つ1次元配列(行ベクトル)で返される。