numpy – 行列(ndarray)

ベクトルと行列の定義

リテラル

ベクトルはnp.array()で引数にリストを指定して定義。

行列は同じくnp.array()で引数に二次元配列のリストを指定して定義。

単位行列

numpy.identity(n)でn×nの単位行列を生成。

転置

行列の転置にはtranspose()メソッドを使う。代替として.Tとしてもよい。

一次元配列で定義したベクトルにはtranspose()は効かない。列ベクトルに変換するにはreshape()メソッドを使う(reshape(行数, 列数))。

演算

定数倍

ベクトル・行列の定数倍は、各要素の定数倍。

加減

同じ要素数のベクトル、同じ次元の行列同士の下限は要素同士の加減

ベクトルの内積

同じ要素数のベクトルの内積(ドット積)はnp.dot()で計算。

     \begin{equation*} {\bf a} \cdot {\bf b} = \sum_{i=1}^n a_i b_i \end{equation*}

*演算子を使うと、要素ごとの積になる。

行列の積

行列同士の積もnp.dot()で計算。l×m行列とm×n行列の積はl×n行列になる。

     \begin{equation*} \left( \begin{array}{ccc} a_{11} & \cdots  & a_{1m} \\ \vdots & a_{ij} & \vdots \\ a_{l1} & \cdots & a_{lm} \\ \end{array} \right) \cdot \left( \begin{array}{ccc} b_{11} & \cdots & b_{1n} \\ \vdots & b_{jk} & \vdots \\ b_{m1} & \cdots & b_{mn} \\ \end{array}  \right) = \left( \sum_{j=1}^m a_{ij} b_{jk} \right) \end{equation*}

次元数が整合しないとエラーになる。

行ベクトルと行列の積は、ベクトルを前からかけてok。

     \begin{equation*} (1, 2, 3) \left( \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right) = (30, 36, 42) \end{equation*}

行列と列ベクトルの積は、一次元配列のベクトルをreshape()で列ベクトルに変換してから。

     \begin{equation*} \left( \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right) \left( \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right) = \left( \begin{array}{c} 14 \\ 32 \\ 50 \end{array} \right) \end{equation*}

なお、np.dot()の代わりに演算子@が使える。ベクトル同士なら内積、少なくともいずれか一つが行列なら行列積。

numpy.linalgパッケージ

行列式

行列式はnumpy.linalgパッケージのdet()関数で得られる。linalgは”linear algebra”の略で、慣例としてLAという名前で代替される。

逆行列

逆行列はnumpy.linalgパッケージのinv()関数で得られる。

固有値・固有ベクトル

正方行列の固有値と固有ベクトルを、eig()関数で得ることができる(行列の固有値・固有ベクトルの例題を用いた)。

結果は固有値が並んだベクトルと固有ベクトルが並んだ配列で、それぞれを取り出して利用する。なお、固有ベクトルはノルムが1となるように正規化されている。

注意が必要なのは固有ベクトルの方で、各固有ベクトルは配列の列ベクトルとして並んでいる。固有ベクトルを取り出す方法は2通り。

固有値に対応するサフィックスで列ベクトルを取り出す。この方法はnumpyの公式ドキュメントにも以下のように書かれている。

v(…, M, M) array
The normalized (unit “length”) eigenvectors, such that the column v[:,i] is the eigenvector corresponding to the eigenvalue w[i].

固有ベクトルの配列を転置して、行ベクトルの並びにする。