LabelEncoder

概要

sklearn.preprocessingLabelEncoderは、クラスデータ(カテゴリーデータ)を数値ラベルに変換する。

  • コンストラクターは引数をとらない
  • fit()メソッドに特徴量を要素とする1次元配列(特徴量数)の元データを与える
  • 特徴量のクラス数がn_classのとき、特徴量データが0~n_class−1の整数ラベルに変換される
  • 特徴量が定量的な数値データであっても整数ラベルに変換される

使い方

LabelEncoderを使うには、まずそのインスタンスを生成し、fit()メソッドで数値ラベルを生成する。fit()メソッドを実行すると、元データのクラスの重複を除いたクラスリストがclasses_プロパティーに保存され、transform()メソッドで任意のデータを変換する変換器が準備される。

準備された変換器で、変換したいデータにtransform()メソッドを適用して、変換された数値ラベルを得る。

このラベルデータにinverse_transform()を適用すると、数値ラベルが元のクラスデータに逆変換される。

transform()の引数に元データに存在しないクラスデータが含まれていた場合、エラーとなる。

注意

LabelEncoderは、元データに定量的な数値データを与えた場合でもこれらを数値ラベルに変換する。

transform()の引数に元データに存在しない数値が含まれている場合はエラーとなる。

 

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です