MinMaxScaler

概要

sklearn.preprocessingモジュールのMinMaxScalerは、各特徴量が0~1の範囲に納まるように変換する。具体的には、特徴量Fiの最小値(mini)と最大値(maxi)から以下の式により各特徴量FiFi*に変換する。

(1)    \begin{equation*} {F_i}^* = \frac{F_i - min_i}{max_i - min_i} \end{equation*}

挙動

それぞれ異なる正規分布に従う2つの特徴量について、MinMaxScalerを適用したときの挙動を以下に示す。異なる大きさとレンジの特徴量が、変換後にはいずれも0~1の間に納まっているのが確認できる。

コードは以下の通りで、データに対してfit()メソッドでスケールパラメーターを決定し、transform()メソッドで変換を行うところを、これらを連続して実行するfit_transform()メソッドを使っている。

特徴

MinMaxScalerは簡明な方法だが、極端に値が離れた異常値が発生すると本来のデータがその影響を受ける場合がある。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です