標準正規分布

標準正規分布の使い方

平均\mu、分散\sigma^2の正規分布N(\mu, \sigma^2)の確率密度関数は以下の通り。

(1)    \begin{equation*} f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left( - \frac{(x - \mu)^2}{2 \sigma^2} \right) \end{equation*}

この場合、X \leq tとなる確率は以下のように表される。

(2)    \begin{equation*} \Pr(X \leq t) = \int_{-\infty}^{t} f(x) dx = \int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left( - \frac{(x - \mu)^2}{2 \sigma^2} \right) dx \end{equation*}

ここで、確率変数を以下のように変換する。

(3)    \begin{equation*} Z = \frac{X - \mu}{\sigma} \quad , \quad u = \frac{t - \mu}{\sigma} \end{equation*}

これを式(2)に適用し、dx = \sigma dzに留意して、

(4)    \begin{equation*} \Pr(X \leq t) &=& Pr \left( \frac{X - \mu}{\sigma} \leq \frac{t - \mu}{\sigma} \right) = \int_{-\infty}^{\frac{t - \mu}{\sigma}} \frac{1}{\sqrt{2 \pi}} \exp \left( - \frac{z^2}{2} \right) dz\end{equation*}

標準正規分布の確率に対する確率変数uの値を覚えていれば、母集団の平均と標準偏差が与えられたとき、上記の変数変換を行って、確率値を得ることができる。

例題

厚生労働省による「平成29年国民健康・栄養調査報告」によると、26歳~29歳の日本人男性の身長は、平均が171.0cm、標準偏差が5.8cmとなっている。この年代層で身長が180cmを超える確率は、

(5)    \begin{equation*} Pr(X > 180) = Pr \left(Z > \frac{180 - 171.0}{5.8} \right) = Pr(Z > 1.5517) \end{equation*}

このuの典型的な値と確率のセットを覚えておけば、確率を知ることができる。この場合は1.5より少し大きいので、超過確率は6%程度とわかる(より正確には6.04%)。

uが0.5なら3割程度、1なら16%、1.5で6.7%になる。

逆に超過確率25%ならu=0.67、10%なら1.28、5%(両側90%以内)で1.64、2.5%(両側95%以内)なら1.96。

 

標準正規分布の確率

典型的な値

標準正規分布のZに対する確率\Pr(Z \leq u)uに対する確率は標準正規分布表で与えられているが、以下の値は覚えておくとよい。

z \Pr(Z > u) \Pr(-u \leq Z \leq u)
0.5 0.31 0.38
0.67449 (0.67) 0.25 0.5
0.84162 0.2 0.6
1 0.16 0.68
1.03643 0.15 0.7
1.15035 0.125 0.75
1.28155 (1.28) 0.1 0.8
1.5 0.067 0.87
1.64485 (1.64) 0.05 0.9
1.95996 (1.96) 0.025 0.95
2 0.023 0.95
2.32635 (2.32) 0.01 0.98
2.57584 (2.58) 0.005 0.99

標準正規分布表

std_norm_dist_table

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です