大数の法則

概要

大数の法則を簡単に言うと、「標本の数を多くとるほど、標本平均の値は母平均に近づく」というもので、感覚的には当たり前と思われることだが、数学的に証明できる。

「それでは、どの位の数を取ったときに、どの程度の平均からのズレで収まるのか?」という問に対しては、大数の法則は答えていない。

大数の弱法則と強法則

大数の法則には弱法則と強法則の2つがあり、それぞれ次のように表される。

大数の弱法則

標本平均\overline{X}_n=\sum \frac{X_i}{n}の標本数を限りなく多くとれば、その\overline{X}が平均\muの近傍からはずれる確率をいくらでも小さくできる。

(1)    \begin{equation*} \lim_{n \rightarrow \infty} \Pr( |\overline{X}_n - \mu| > \varepsilon ) = 0 \end{equation*}

証明

チェビシェフの不等式\overline{X}_nを適用する。

(2)    \begin{equation*} \Pr ( |\overline{X}_n - E(\overline{X}_n)| \geq \varepsilon) \leq \frac{V(\overline{X}_n)}{\varepsilon^2} \end{equation*}

ここで標本平均の期待値と分散を適用して極限をとると

(3)    \begin{equation*} \lim_{n \rightarrow \infty} \Pr ( |\overline{X}_n -\mu)| \geq \varepsilon) \leq \lim_{n \rightarrow \infty} \frac{\sigma / n}{\varepsilon^2} = 0 \end{equation*}

大数の強法則

標本平均\overline{X}_n=\sum \frac{X_i}{n}の標本数を限りなく多くとれば、\overline{X}はほぼ確実に(確率1で)\muに収束する。

(4)    \begin{equation*} \Pr ( \lim_{n \rightarrow \infty} \overline{X}_n = \mu) = 1 \end{equation*}

対数の強法則は弱法則に比べて強い主張であり、その分証明は難しくなるとのこと。

 

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です